LOADING

Comparative Nutritional and Molecular Characterization of Themeda arguens (Piano Grass) from Central Jamaica

Piano grass (Themeda arguens), reputed to have been introduced to Jamaica as packing material in an imported piano1 . There are about 27 varieties of this highly invasive grass/weed worldwide[1] and in Jamaica the species previously identified as Themeda arguens is of concern as it has progressively taken over lawns, pastures and roadsides [1]. The grass is of particular concern to livestock farmers due to its highly invasive and aggressive nature and the concomitant negative effect on livestock productivity, especially during its annual seeding period (November/December – April) [2], when the palatability of the grass diminishes significantly and the seed awns can cause severe damage to the mouth when consumed, and feet of livestock [2], sometimes requiring veterinary intervention.

About This Event
more great events

Might Be Interesting

Day 4
  —  
10:20 am

USING SEA SURFACE TEMPERATURES IN THE PACIFIC NINÕ ZONES TO PREDICT DRY WEATHER DURING THE OPTIMAL GROWING SEASON IN PORTLAND

A major challenge facing farmers in Portland, Jamaica is dry weather, especially during the optimal growing season from April through August. During this five-month period Portland suffered from severe dry spells during the years 2014, 2015, 2018 and 2020. A second challenge is the damage to crops and land as well as loss of livestock due to tropical storms or hurricanes and the associated flooding. Portland farmers have suffered losses due to an active hurricane season numerous times and most recently in the years 2004, 2005, 2012 and 2020.

Day 4
  —  
1:05 pm

A DFT AND EXPERIMENTAL STUDY OF THE HYDROLYTIC DEGRADATION BEHAVIOUR AND SPECTROSCOPIC PROPERTIES OF SOME BENZYLIDENEANILINES

Benzylideneanilines, the condensation products of benzaldehyde and aniline derivatives, have enjoyed significant success as optical metal ion sensors due to their ability to form stable metal complexes which exhibit distinct spectral features compared to the unbound compound. However, their use in aqueous media is limited by the hydrolytic susceptibility of the C=N moiety. Hence, an in-depth investigation into the hydrolytic degradation mechanism of a series of 2-aminophenol derived Nbenzylideneanilines was conducted wherein molecular modelling techniques were applied to elucidate the “step-by-step” transformation mechanism of these compounds from a fundamental perspective.

Day 4
  —  
10:00 am

AN ACO-BASED ALGORITHM FOR HETEROGENEOUS COMPUTING ENVIRONMRNTS USING PRIORITY QUEUES

In parallel and distributed computing environments, task scheduling, where the basic idea is minimizing time loss and maximizing performance, is an absolutely critical component. Scheduling in these environments is NP-hard, so it is important that we continue to search and find the most efficient and effective ways of mapping tasks to processors. One such effective approach is known as Ant Colony Optimization (ACO). This popular optimization technique is inspired by the foraging behavior of ants in their colonies to find the shortest paths between their nests and food sources.

Day 3
  —  
10:40 am

Psychedelic Assisted Psychotherapy - Preparing your Target Using Psychohistoriography: A Jamaican perspective

In recent years there has been a resurgence in interest in psychedelic assisted psychotherapy (PAP) [1]. Initial scientific research into the utilization of these compounds were eventually suspended due to concerns related to increasing recreational use of psychedelics and their association with the rise of the “counterculture movement” in the United States [2]. However, the use of psilocybin and other psychedelics have shown promise in the treatment of mental illnesses. The efficacy of this modality of treatment has been demonstrated through clinical trials and other studies in the management of a number of mental illnesses, including some treatment resistant cases [3].

See All Events

Register your interest


by clicking any of the buttons below

Location

1649 Norman Street, Los Angeles,
90011

Email/Phone

hello@eventure.com
8 (800) 807-2437

Follow Us

Contact Us