Piano grass (Themeda arguens), reputed to have been introduced to Jamaica as packing material in an imported piano1 . There are about 27 varieties of this highly invasive grass/weed worldwide[1] and in Jamaica the species previously identified as Themeda arguens is of concern as it has progressively taken over lawns, pastures and roadsides [1]. The grass is of particular concern to livestock farmers due to its highly invasive and aggressive nature and the concomitant negative effect on livestock productivity, especially during its annual seeding period (November/December – April) [2], when the palatability of the grass diminishes significantly and the seed awns can cause severe damage to the mouth when consumed, and feet of livestock [2], sometimes requiring veterinary intervention.
The majority of scientific discoveries remain confined to dissertations and peer review publications where they remain hidden from their possible industrial applications. Given the challenges offered by current global events like environmental pollution, climate change effects, and diseases, the need for more rapid transmission of scientific discoveries from the realm of postgraduate dissertations and research papers to industrial applications is most critical. Hence, the need for a clear road map, allowing the connection of both pure and applied scientific discoveries to their industrial applications is obvious. Of course, for this to be achieved, a clear understanding of the constituent steps of such a process is germane. Hence, this brief workshop aims to map a possible path for achieving the aforementioned central goal, using previous experiences and examples.
At the inception of automated solar tracking in the 1970’s, geometric architectures with pair(/s) of solid-state photo-sensitive devices were constructed and used to detect the sun’s position. As an alternative in recent years, cameras have been used to capture and process live sky images to detect the sun’s position. When the sky is cloudy however, both approaches are prone to errors and sometimes require human intervention which tend to reduce the trackers’ economic viability [1].
Pesticide usage in agriculture has occurred for centuries and led to significant positive outcomes in food production and noticeable reduction in crop losses. However, pesticide usage on food crops often results in the presence of toxic pesticide residues on food produce, which is the main route of exposure to pesticides in humans. The toxicity of the pesticide residues can potentially cause debilitating effects to major human organs and body systems. Pesticide residue analysis addresses the issue of pesticide residues in foods by screening and quantifying the levels of pesticides in food commodities.
by clicking any of the buttons below