Oral malodour called halitosis, and commonly referred to as ‘bad breath’, is a socially offensive and discriminating occurrence that requires effective management for health improvement and avoidance of debasing stratification of sufferer. Halitosis has been reported to be prevalent in up to 50% of the general population in the USA, and about 6-23% in China. Between 80% and 85% of halitosis cases are caused by intraoral conditions. Literature on halitosis in Jamaica is either scarce or non-existent. Prior to the COVID-19 pandemic, a common malodour that seemed to be spreading among persons through oral interaction by face-to-face contact with a sufferer was observed among the general populace in Mandeville, Manchester, Jamaica.
Numerous organic chemicals, either directly manufactured or formed as byproducts of other processes, are released into the environment. Once there, many cause adverse effects on environmental and human systems. Of particular concern are long-lasting impacts from those organic pollutants that remain in the environment for long periods of time. The development of appropriate management strategies to address this problem requires knowledge of the environmental distributions of these pollutants.
The majority of scientific discoveries remain confined to dissertations and peer review publications where they remain hidden from their possible industrial applications. Given the challenges offered by current global events like environmental pollution, climate change effects, and diseases, the need for more rapid transmission of scientific discoveries from the realm of postgraduate dissertations and research papers to industrial applications is most critical. Hence, the need for a clear road map, allowing the connection of both pure and applied scientific discoveries to their industrial applications is obvious. Of course, for this to be achieved, a clear understanding of the constituent steps of such a process is germane. Hence, this brief workshop aims to map a possible path for achieving the aforementioned central goal, using previous experiences and examples.
Vector-borne diseases have since the 17th century been the leading cause of death by disease more than any other causes combined, even preventing development in the tropics (Gubler 1998). Of all insect vectors, Aedes aegypti proves to be the deadliest as it is the primary vector of the four most notorious vector-borne diseases – chikungunya (chik-V), Zika (Zik-V), dengue fever and yellow fever viruses. Control of the spread of Aedesborne diseases is primarily reliant on the control of the vector responsible for their spread. Traditionally, vector control relied on environmental hygiene and the elimination of breeding sites (Gubler 1998), shifting only in the 1980s to the use of synthetic chemicals in the form of carbamate, organochloride, organophosphate and pyrethroid insecticides (Norris, et al. 2015). However, the evolution of Aedes aegypti resistance to synthetic chemicals have made control of the spread of the vector and its diseases increasingly difficult. This led to the exploration of innovative and alternative methods in the control of Aedes aegypti.
by clicking any of the buttons below