Vector-borne diseases have since the 17th century been the leading cause of death by disease more than any other causes combined, even preventing development in the tropics (Gubler 1998). Of all insect vectors, Aedes aegypti proves to be the deadliest as it is the primary vector of the four most notorious vector-borne diseases – chikungunya (chik-V), Zika (Zik-V), dengue fever and yellow fever viruses. Control of the spread of Aedesborne diseases is primarily reliant on the control of the vector responsible for their spread. Traditionally, vector control relied on environmental hygiene and the elimination of breeding sites (Gubler 1998), shifting only in the 1980s to the use of synthetic chemicals in the form of carbamate, organochloride, organophosphate and pyrethroid insecticides (Norris, et al. 2015). However, the evolution of Aedes aegypti resistance to synthetic chemicals have made control of the spread of the vector and its diseases increasingly difficult. This led to the exploration of innovative and alternative methods in the control of Aedes aegypti.
Forensic Crime Scene Investigators (FCSIs) are forensic practitioners who are key components to the investigative process within a legal framework. In fact, the criminal justice system considers the scientific evaluation and forensic evidence collection to be the most significant aspect of any criminal investigation and court cases. Despite this, limited literature exists on the psychological effects experienced by FCSIs from processing gruesome crime scenes on a regular basis.
The control of invasive species in crops with low tolerance are seen as a public good. This makes it a collective responsibility led by government. This is done directly through public expenditure on control measures or indirectly through incentives to people whose actions may be a contributing factor to the problem. The risks associated with invasive species have been increasing especially with globalization but are changing in nature thus warranting novel strategies for their management.
In parallel and distributed computing environments, task scheduling, where the basic idea is minimizing time loss and maximizing performance, is an absolutely critical component. Scheduling in these environments is NP-hard, so it is important that we continue to search and find the most efficient and effective ways of mapping tasks to processors. One such effective approach is known as Ant Colony Optimization (ACO). This popular optimization technique is inspired by the foraging behavior of ants in their colonies to find the shortest paths between their nests and food sources.
by clicking any of the buttons below