The worldwide ginger market was valued at US$6.82 billion in 2020, with India, Nigeria and China being the top global producers (Global Ginger Market Report, 2021). Jamaican ginger once held pride of place in the global market, with its widely accepted superior quality, uniqueness of flavor and high oil content. However, since the initial outbreak of the ginger rhizome rot disease in 1995, production has drastically plummeted to insignificant levels and the industry has not yet recovered. In this regard, a number of intervention strategies have been implemented by the Government of Jamaica over the years, including the Eastern Jamaica Agricultural Support Project of 1993 under RADA, the Ginger Agricultural Science, Technology and Innovation Working Group initiative supported by the CTA ACP-EU under the National Commission and Science and Technology in 2005, the Ginger Resuscitation and Expansion Programme of 2011 led by the Export Division of the Ministry of Agriculture, the Ginger Value Chain Study supported by the FAO, the Ginger Varietal Study funded through the Jamaica Business Development Fund in 2018 and the ongoing Ginger Value Chain and Certification Programme supported by the FAO, with propagation and production of disease-free planting materials. These programmes, amounting to investments of millions of dollars, through partnerships with the key private, governmental and international stakeholders, have been met with varying degrees of success.
Economic development theorists ((Schumpter 1942), (Romer, 1994), (Solow, 1956)) have established the theoretical constructs of scientific and technological developments as foundations to innovative solutions in the form of products, processes and services to long-term socio-economic development and prosperity to high-end economies around the world. It is through the pervasiveness of these innovations within markets which then spurs a sustainable social transformation and long term economic growth within nations.
Benzylideneanilines, the condensation products of benzaldehyde and aniline derivatives, have enjoyed significant success as optical metal ion sensors due to their ability to form stable metal complexes which exhibit distinct spectral features compared to the unbound compound. However, their use in aqueous media is limited by the hydrolytic susceptibility of the C=N moiety. Hence, an in-depth investigation into the hydrolytic degradation mechanism of a series of 2-aminophenol derived Nbenzylideneanilines was conducted wherein molecular modelling techniques were applied to elucidate the “step-by-step” transformation mechanism of these compounds from a fundamental perspective.
At the inception of automated solar tracking in the 1970’s, geometric architectures with pair(/s) of solid-state photo-sensitive devices were constructed and used to detect the sun’s position. As an alternative in recent years, cameras have been used to capture and process live sky images to detect the sun’s position. When the sky is cloudy however, both approaches are prone to errors and sometimes require human intervention which tend to reduce the trackers’ economic viability [1].
In recent years there has been a resurgence in interest in psychedelic assisted psychotherapy (PAP) [1]. Initial scientific research into the utilization of these compounds were eventually suspended due to concerns related to increasing recreational use of psychedelics and their association with the rise of the “counterculture movement” in the United States [2]. However, the use of psilocybin and other psychedelics have shown promise in the treatment of mental illnesses. The efficacy of this modality of treatment has been demonstrated through clinical trials and other studies in the management of a number of mental illnesses, including some treatment resistant cases [3].
by clicking any of the buttons below