
Benzylideneanilines, the condensation products of benzaldehyde and aniline derivatives, have enjoyed significant success as optical metal ion sensors due to their ability to form stable metal complexes which exhibit distinct spectral features compared to the unbound compound. However, their use in aqueous media is limited by the hydrolytic susceptibility of the C=N moiety. Hence, an in-depth investigation into the hydrolytic degradation mechanism of a series of 2-aminophenol derived Nbenzylideneanilines was conducted wherein molecular modelling techniques were applied to elucidate the “step-by-step” transformation mechanism of these compounds from a fundamental perspective.
The FORECAST Grand Innovation Challenge 2022 (GIC) is to develop a feasible innovation (prototype/product/concept) that will revolutionize the management, protection, and use of water resources in the Caribbean.
In recent years there has been a resurgence in interest in psychedelic assisted psychotherapy (PAP) [1]. Initial scientific research into the utilization of these compounds were eventually suspended due to concerns related to increasing recreational use of psychedelics and their association with the rise of the “counterculture movement” in the United States [2]. However, the use of psilocybin and other psychedelics have shown promise in the treatment of mental illnesses. The efficacy of this modality of treatment has been demonstrated through clinical trials and other studies in the management of a number of mental illnesses, including some treatment resistant cases [3].
Lead, a well-known neurotoxin, remains environmentally abundant, arising from many natural and synthetic processes which encourage its environmental accumulation and hence, increased interactions with flora and fauna. Therefore, tremendous research efforts have been invested into developing various methods for its analysis and sequestration, however, affordability, sensitivity and selectivity still remain formidable challenges in this area and hence here is room for further exploration.
by clicking any of the buttons below