Vector-borne diseases have since the 17th century been the leading cause of death by disease more than any other causes combined, even preventing development in the tropics (Gubler 1998). Of all insect vectors, Aedes aegypti proves to be the deadliest as it is the primary vector of the four most notorious vector-borne diseases – chikungunya (chik-V), Zika (Zik-V), dengue fever and yellow fever viruses. Control of the spread of Aedesborne diseases is primarily reliant on the control of the vector responsible for their spread. Traditionally, vector control relied on environmental hygiene and the elimination of breeding sites (Gubler 1998), shifting only in the 1980s to the use of synthetic chemicals in the form of carbamate, organochloride, organophosphate and pyrethroid insecticides (Norris, et al. 2015). However, the evolution of Aedes aegypti resistance to synthetic chemicals have made control of the spread of the vector and its diseases increasingly difficult. This led to the exploration of innovative and alternative methods in the control of Aedes aegypti.
The control of invasive species in crops with low tolerance are seen as a public good. This makes it a collective responsibility led by government. This is done directly through public expenditure on control measures or indirectly through incentives to people whose actions may be a contributing factor to the problem. The risks associated with invasive species have been increasing especially with globalization but are changing in nature thus warranting novel strategies for their management.
Benzylideneanilines, the condensation products of benzaldehyde and aniline derivatives, have enjoyed significant success as optical metal ion sensors due to their ability to form stable metal complexes which exhibit distinct spectral features compared to the unbound compound. However, their use in aqueous media is limited by the hydrolytic susceptibility of the C=N moiety. Hence, an in-depth investigation into the hydrolytic degradation mechanism of a series of 2-aminophenol derived Nbenzylideneanilines was conducted wherein molecular modelling techniques were applied to elucidate the “step-by-step” transformation mechanism of these compounds from a fundamental perspective.
At the inception of automated solar tracking in the 1970’s, geometric architectures with pair(/s) of solid-state photo-sensitive devices were constructed and used to detect the sun’s position. As an alternative in recent years, cameras have been used to capture and process live sky images to detect the sun’s position. When the sky is cloudy however, both approaches are prone to errors and sometimes require human intervention which tend to reduce the trackers’ economic viability [1].
Numerous organic chemicals, either directly manufactured or formed as byproducts of other processes, are released into the environment. Once there, many cause adverse effects on environmental and human systems. Of particular concern are long-lasting impacts from those organic pollutants that remain in the environment for long periods of time. The development of appropriate management strategies to address this problem requires knowledge of the environmental distributions of these pollutants.
A major challenge facing farmers in Portland, Jamaica is dry weather, especially during the optimal growing season from April through August. During this five-month period Portland suffered from severe dry spells during the years 2014, 2015, 2018 and 2020. A second challenge is the damage to crops and land as well as loss of livestock due to tropical storms or hurricanes and the associated flooding. Portland farmers have suffered losses due to an active hurricane season numerous times and most recently in the years 2004, 2005, 2012 and 2020.
by clicking any of the buttons below