Globally, STEM scientists are the apex of novel innovation and cutting-edge research and development. While, patents are inextricably linked to innovation, research, and development, both undergraduate and graduate STEM students rarely invent, and those that do almost never invent twice. The thesis of this presentation is three-fold: (1) The understanding, value, benefits, and basics of intellectual property (IP) creation and invention are fundamentally missing in STEM curricula; (2) There are few (if any) incentives for STEM researchers to create and file patent applications within the University environment; and (3) Patent filling assistance programs (pro se) provide pro bono outreach and education to applicants. The key tenants of this presentation are reduced to practice as it relates to pro se patent filings of West Indies inspired invention to the United States Patent and Trademark Office (USPTO) in 2021 and 2022. Three examples of West Indies conceived and awarded IP by a lead inventor domiciled in Anguilla, BWI (Patent Nos. 10,934,168, 11,219,255, and 11,298,375). Further, a permanent patent filling, titled: “Innocuous Sterilant using Hemocyanin and Functionalized Fullerenes with Broad-Spectrum Intracellular and Interstitial Microbiocidal and Radical Scavenging Effects for Packaged Matter, Biologics and Organics including Liquids, Gases, Tissue, Organs, Cells, and Limbs with Copper Mediated Oxygenation for Viability and Preservation” is under review and awaiting a first office action offering broad evidence of origination of IP in the West Indies. As case studies for this presentation, two pieces of IP are examined: The permanent patent and a recently filed provisional application that teaches a minimally invasive and unassisted robotic surgical method for atomic scale manipulation of funtionalized nanoparticles to perform high precision “nano surgery”.
Brookhaven National Laboratory delivers discovery science and transformative technology to power and secure the nation’s future. Primarily supported by the U.S. Department of Energy’s (DOE) Office of Science, Brookhaven Lab is a multidisciplinary laboratory with seven Nobel Prize-winning discoveries, 37 R&D 100 Awards, and more than 70 years of pioneering research. The laboratory is open to users from all countries and areas of STEM. The workshop will give an introduction to the capabilities of the laboratory, how to access facilities and collaboration tips for working with BNL scientists.
Elsevier is a Netherlands-based academic publishing company specializing in scientific, technical, and medical content. Its products include a number of top-tiered international journals the online citation database Scopus, the SciVal tool for measuring research performance. This publishing house works across all areas of STEM and its products and services also include digital tools for data management, instruction, research analytics and assessment. The company runs several workshops aimed at capacity building with their stakeholders and users.
At the inception of automated solar tracking in the 1970’s, geometric architectures with pair(/s) of solid-state photo-sensitive devices were constructed and used to detect the sun’s position. As an alternative in recent years, cameras have been used to capture and process live sky images to detect the sun’s position. When the sky is cloudy however, both approaches are prone to errors and sometimes require human intervention which tend to reduce the trackers’ economic viability [1].
The majority of scientific discoveries remain confined to dissertations and peer review publications where they remain hidden from their possible industrial applications. Given the challenges offered by current global events like environmental pollution, climate change effects, and diseases, the need for more rapid transmission of scientific discoveries from the realm of postgraduate dissertations and research papers to industrial applications is most critical. Hence, the need for a clear road map, allowing the connection of both pure and applied scientific discoveries to their industrial applications is obvious. Of course, for this to be achieved, a clear understanding of the constituent steps of such a process is germane. Hence, this brief workshop aims to map a possible path for achieving the aforementioned central goal, using previous experiences and examples.
Vector-borne diseases have since the 17th century been the leading cause of death by disease more than any other causes combined, even preventing development in the tropics (Gubler 1998). Of all insect vectors, Aedes aegypti proves to be the deadliest as it is the primary vector of the four most notorious vector-borne diseases – chikungunya (chik-V), Zika (Zik-V), dengue fever and yellow fever viruses. Control of the spread of Aedesborne diseases is primarily reliant on the control of the vector responsible for their spread. Traditionally, vector control relied on environmental hygiene and the elimination of breeding sites (Gubler 1998), shifting only in the 1980s to the use of synthetic chemicals in the form of carbamate, organochloride, organophosphate and pyrethroid insecticides (Norris, et al. 2015). However, the evolution of Aedes aegypti resistance to synthetic chemicals have made control of the spread of the vector and its diseases increasingly difficult. This led to the exploration of innovative and alternative methods in the control of Aedes aegypti.
by clicking any of the buttons below