Lead, a well-known neurotoxin, remains environmentally abundant, arising from many natural and synthetic processes which encourage its environmental accumulation and hence, increased interactions with flora and fauna. Therefore, tremendous research efforts have been invested into developing various methods for its analysis and sequestration, however, affordability, sensitivity and selectivity still remain formidable challenges in this area and hence here is room for further exploration.
Numerous organic chemicals, either directly manufactured or formed as byproducts of other processes, are released into the environment. Once there, many cause adverse effects on environmental and human systems. Of particular concern are long-lasting impacts from those organic pollutants that remain in the environment for long periods of time. The development of appropriate management strategies to address this problem requires knowledge of the environmental distributions of these pollutants.
In parallel and distributed computing environments, task scheduling, where the basic idea is minimizing time loss and maximizing performance, is an absolutely critical component. Scheduling in these environments is NP-hard, so it is important that we continue to search and find the most efficient and effective ways of mapping tasks to processors. One such effective approach is known as Ant Colony Optimization (ACO). This popular optimization technique is inspired by the foraging behavior of ants in their colonies to find the shortest paths between their nests and food sources.
by clicking any of the buttons below