Elsevier is a Netherlands-based academic publishing company specializing in scientific, technical, and medical content. Its products include a number of top-tiered international journals the online citation database Scopus, the SciVal tool for measuring research performance. This publishing house works across all areas of STEM and its products and services also include digital tools for data management, instruction, research analytics and assessment. The company runs several workshops aimed at capacity building with their stakeholders and users.
A major challenge facing farmers in Portland, Jamaica is dry weather, especially during the optimal growing season from April through August. During this five-month period Portland suffered from severe dry spells during the years 2014, 2015, 2018 and 2020. A second challenge is the damage to crops and land as well as loss of livestock due to tropical storms or hurricanes and the associated flooding. Portland farmers have suffered losses due to an active hurricane season numerous times and most recently in the years 2004, 2005, 2012 and 2020.
Plant viruses are responsible for significant losses in crop production annually. Infections are often exacerbated by mixed infections. One strategy of combatting viral disease spread lies in swift diagnoses so that immediate interventions can be employed to slow or stop their spread. Sweet pepper, hot pepper, and tomato are among the most important cash crops in Jamaica and are constantly threatened by pathogens.
The malaria epidemic was responsible for about 241 million infectious cases and 627,000 deaths worldwide in 2020.[1] This infectious disease, transmitted by the female Anopheles mosquito, is caused by parasites of the genus Plasmodium namely P. falciparum, P. vivax, P. malariae, P. knowlesi, P. ovale curtisi and P. ovale wallikeri.[2,3] Also, malaria is found predominantly in the highlands of Africa which accounts for more than 90% of infections worldwide. While there has been some success in the treatment of malaria, its eradication has been negatively impacted by insecticide and drug resistance. With emergence of thiosemicarbazone as antimalarial agents, the combination of pyridine and amide or thioamide moieties into one scaffold makes for an interesting target.[4]
Vector-borne diseases have since the 17th century been the leading cause of death by disease more than any other causes combined, even preventing development in the tropics (Gubler 1998). Of all insect vectors, Aedes aegypti proves to be the deadliest as it is the primary vector of the four most notorious vector-borne diseases – chikungunya (chik-V), Zika (Zik-V), dengue fever and yellow fever viruses. Control of the spread of Aedesborne diseases is primarily reliant on the control of the vector responsible for their spread. Traditionally, vector control relied on environmental hygiene and the elimination of breeding sites (Gubler 1998), shifting only in the 1980s to the use of synthetic chemicals in the form of carbamate, organochloride, organophosphate and pyrethroid insecticides (Norris, et al. 2015). However, the evolution of Aedes aegypti resistance to synthetic chemicals have made control of the spread of the vector and its diseases increasingly difficult. This led to the exploration of innovative and alternative methods in the control of Aedes aegypti.
by clicking any of the buttons below